

The CO2EXIDE electrochemical cell: Simultaneous ethylene and Hydrogen peroxide production

Sustainable Plastics Symposium 25.03.2021

Kerstin Wiesner-Fleischer, Siemens Energy

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 768789.

1

Introduction CO₂EXIDE Technology - Overview

Simultaneous Electrocatalysis

Cathodic reaction: 2 CO₂ + 8 H₂O + 12 e⁻ \rightleftharpoons C₂H₄ + 12 OH⁻ E^0 = -1.17 V vs. RHE

Anodic reaction:

 $2 H_2O \rightleftharpoons H_2O_2 + 2 H^+ + 2 e^-, E^0 = 1.76 V vs. RHE$

The generic concept of the CO2EXIDE flow cell is based on a three chamber cell

Electrochemical CO₂ reduction CO2RR

CO ₂ - Reduction prod	uct formation is st	rongly dep	benden	t on the	e electroca	atalyst ma	terial			
		Electrode	CH ₄	C_2H_4	C ₂ H ₅ OH	C ₃ H ₇ OH	СО	HCOO ⁻	H ₂	Total
 CO2RR is a complex multi-step reaction adsorption of CO₂ is typically the rate-determining step reaction mechanisms for the various products are affected by the binding strength of reactants and intermediates on the catalyst surface key step in the formation of C2 species proposed to be the dimerization of neighbouring *CO 	$\frac{hydrocarbons}{Main product} → CO$	Cu Au Ag Zn Pd Ga Pb Hg	33.3 0.0 0.0 0.0 2.9 0.0 0.0 0.0	25.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0	5.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	3.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	1.3 87.1 81.5 79.4 28.3 23.2 0.0 0.0	9.4 0.7 0.8 6.1 2.8 0.0 97.4 99.5	20.5 10.2 12.4 9.9 26.2 79.0 5.0 0.0	103.5 98.0 94.6 95.4 60.2 102.0 102.4 99.5
	Main product Formate Main product Hydrogen \rightarrow	In Sn Cd Tl Ni Fe Pt Ti	0.0 0.0 1.3 0.0 1.8 0.0 0.0 0.0	0.0 0.0 0.0 0.1 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	$2.1 \\ 7.1 \\ 13.9 \\ 0.0$	94.9 88.4 78.4 95.1 1.4 0.0 0.1 0.0	3.3 4.6 9.4 6.2 88.9 94.8 95.7 99.7	100.3 100.1 103.0 101.3 92.4 94.8 95.8 99.7

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 768789.

Y. Hori, "Electrochemical CO₂ reduction on metal electrodes" in Modern Aspects of Electrochemistry, Vol. 42, published by C.G. Vayenas, R.E. White and M.E. Gamboa-Aldeco, Springer, NY, 2008, pp. 89-189

Electrochemical CO₂ reduction CO2RR to ethylene as product - Challenges

Electrochemical CO_2 reduction CO2RRto ethylene as product – Electrode preparation

Types of electrodes tested:

- various forms of Cu metallic electrodes (monocrystals, meshes, foams, etc.)
- nanowires electrodeposited in Anodic Aluminium Oxide (AAO) templates
- graphene sheet stacks modified with Cu metal powder
- electrochemically deposited copper on various substrates
- Cu layers sputtered onto metallic substrates (Cu, Fe)
- Cu layers sputtered onto Gas Diffusion Layers \rightarrow GDEs

produce robust and scalable electrodes, which can be used in the demonstrator

- Cathode: 500 nm Cu sputter deposited on Freudenberg H23C2
- Electrochemical experiments at 200 mA/cm²
- 10 cm² MicroFlowCell[®] (ElectroCell) Stability ~ 5h
- Concentration of C_2H_4 in product gas ~ 4%

Anodic Electrosynthesis of H_2O_2 via Water Oxidation

 $2e^{-}$ WOR: electrochemical production of H_2O_2 from just water and renewable energy:

 $2H_2O \rightleftharpoons H_2O_2 + 2H^+ + 2e^-$, $E^0 = 1.76 V$ vs. RHE

- Unorthodox method for H_2O_2 production due to more favourable competing reactions:
 - a) O_2 evolution: $2H_2O \rightleftharpoons O_2 + 4H^+ + 4e^-$, $E^0 = 1.23$ V vs. RHE
 - b) H_2O_2 oxidation: $H_2O_2 \rightleftharpoons O_2 + 2H^+ + 2e^-$, $E^0 = 0.67 \text{ V vs. RHE}$
 - c) H_2O_2 decomposition: $2H_2O_2 \rightarrow O_2 + 2H_2O_2$

•

• Research: catalyst materials & aqueous supporting electrolyte

Recent Developments in 2e⁻ WOR to Produce H_2O_2

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 768789.

- Oxides achieve high %*FE*s and C-fibres reach acceptable H_2O_2 production rates, both at low current densities
- Catalyst disadvantages: •
 - Oxides & carbon operate at \cap very low currents $(<10 \text{ mA cm}^{-2})$
 - Oxides like BiVO₄, CaSnO₃ 0 toxic for environment
 - Carbon fibre will degrade 0 easily at high currents

•

2e⁻ WOR Research at the University of Southampton SOTON

- SOTON: boron-doped diamond (BDD) coated on Ti with a B doping: ~4,000 ppm
- Experiments in 25 mL, 2 M KHCO₃, pH 8, applied potential = 0-3.5 V vs. RHE
- H_2O_2 results: 29.0 mM; 19.7 μ mol cm⁻² min⁻¹ and %*FE* of 28% at current ~ 295 mA cm⁻²
- Results compare favourable to literature:

Future SOTON Experiments on 2e⁻ WOR

1. Investigate influence of various BDD film parameters on H_2O_2 production:

- a. B doping level
- b. Crystallite texture
- c. Coating thickness
- d. sp³/sp² ratio, etc.
- 2. Evaluate influence of electrolyte anions on H_2O_2 production & optimise electrolyte
- 3. Scale up process from small-volume cell to flow reactor

The Cell Concept

- Flow Cell in 3-chamber design
- Anolyte and catholyte flow in the same direction but cross each other
- The gas flow is directed in the opposite direction to the liquid flow

Development strategy for scale-up:

- 1. Step: Electrolysis cell with 25 cm² active area
- 2. Step: Electrolysis cell with 300 cm² active area

The 25 cm² Cell

Velocity in the Anolyte Flow Field (Top View)

Velocity in the CO₂ Flow Field (Top View)

Cell was optimized by computational fluid dynamics (CFD) simulations to assure a homogeneous flow distribution and a low pressure drop in all media-leading chambers.

SCHAEFFLER

The 25 cm² Cell

- More than 10 different anode and cathode catalyst configurations were tested in the 25 cm² cell
- No internal leakage during the complete testing procedure was observed
- → Cell design & material choice was evaluated to be suitable
- → Successful 25 cm² design was used as base for 300 cm² demonstrator unit

The 300 cm² Cell

The 300cm² Cell: Test phase in lab

- anolyte reservoir pump + filter + flow sensor
- 2 catholyte reservoir
 4 pump + filter + flow sensor
- 300cm² flowcell
- 5 humidification of CO₂ feedgas
- 6 gas-out differential pressure generation
- 7 gas-supply for educt and purge (CO_2/N_2)
- 8c heat exchanger/cooling system for anolyte
 8a and catholyte

catholyte and anolyte tempering pumps

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 768789.

9

300cm² Cell - simultaneous production of ethylene and hydrogen peroxide

- Cathode: 500 nm Cu sputter deposited on Freudenberg H23C2
- Catholyte: 1M KHCO₃
- Anode: BDD/Nb, 2500 ppm boron doping (NeoCoat®)
- Anolyte: 2M KHCO₃
- Membrane: Nafion 117
- Current density: 200mA/cm²
- simultaneous production of ethylene at the cathode and hydrogen peroxide at the anode
- Stability ~ 5h
- H_2O_2 concentration in anolyte ~ 30 mmol/L (FE- H_2O_2 30%)
- C_2H_4 in product gas ~1,8% (FE- C_2H_4 25%)

→ Successful testing of scaled electrolyser cell
 → 300 cm² Cell ready for integration in demonstrator set-up

Demonstrator set-up Planning of installation at AGH, Krakow

AGH

AGH University of Science and Technology in Kraków Institute for Materials and Nanotechnology Labolatory for CO2Exide Dimensioning of working space in the hood for experimental CO2Exide setup installation

CAD-simulated realistic view of the Electrolysis setup in the dimensions of fumehood 3 at AGH in Krakow.

Many thanks for your attention!

SIEMENS COCIGY

Further Information

Contact

Dr. Kerstin Wiesner-Fleischer kerstin.wiesner@siemens-energy.com

SIEMENS COCIGY

Project coordination

Dr. Arne Roth arne.roth@igb.fraunhofer.de

www.CO2EXIDE.eu