CO2EXIDE

Life cycle assessment and impact-related studies Johannes Lindorfer Valerie Rodin Energieinstitut at the Johannes Kepler University Linz, Austria

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 768789.

.

Life cycle assessment and impact-related studies Outline

Topics related to **environmental impacts** are quantified

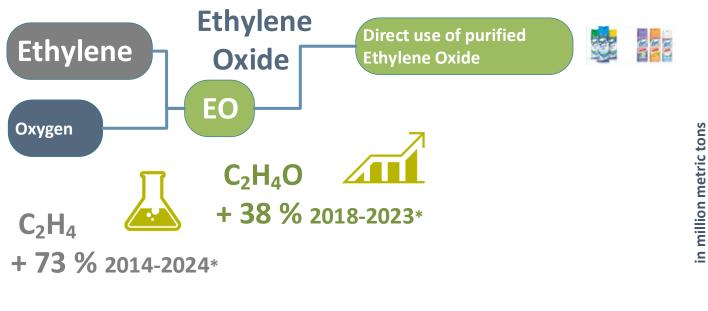
Biogenic CO₂ as single carbon source for ethylene/ethylene oxide via electrocatalytic conversion

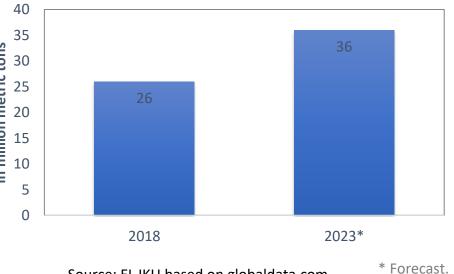
Life Cycle Assessment & benchmarking to relevant reference systems

Topics of techno-economic impact and exploitation scenarios are elaborated

Availability & matching of biogenic CO₂ and renewable electricity sources for CO₂EXIDE exploitation scenarios

Data acquisition to estimate production cost and identify the relevant variables for further development & future deployment

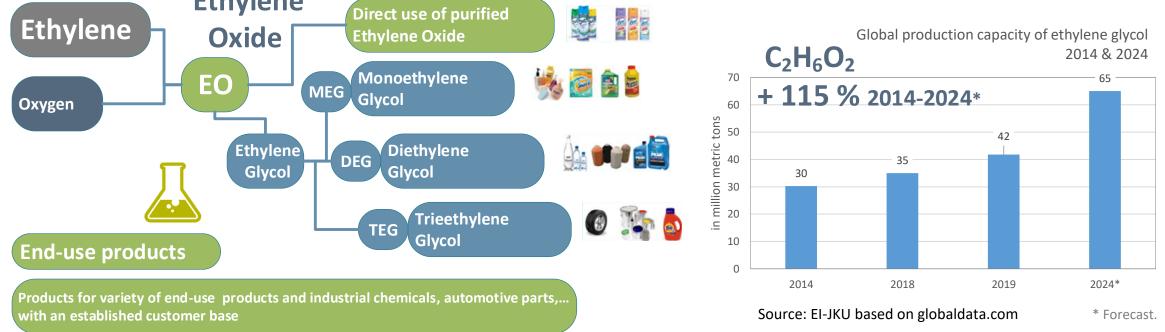




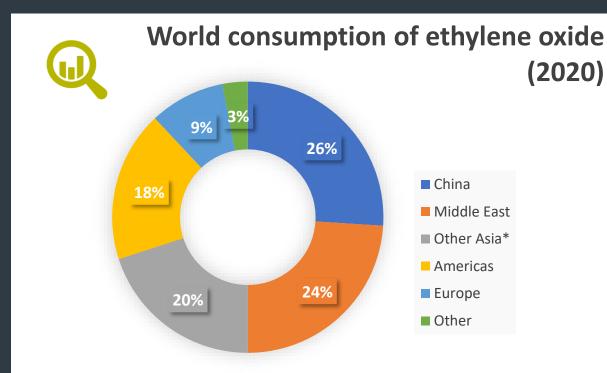
Building blocks for a vast range of chemicals Reactive molecules produced on a vast scale as a plastics precursor

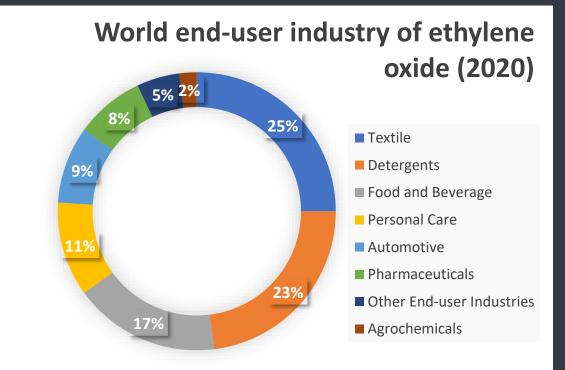
Global production capacity of ethylene oxide 2018 & 2023

Source: EI-JKU based on globaldata.com


3

Building blocks for a vast range of chemicals Intermediates in production of terephthalate polyester resins for fibers, films, and bottles Intermediates in production of the polyester resins for fibers, films, and bottles


This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 768789.



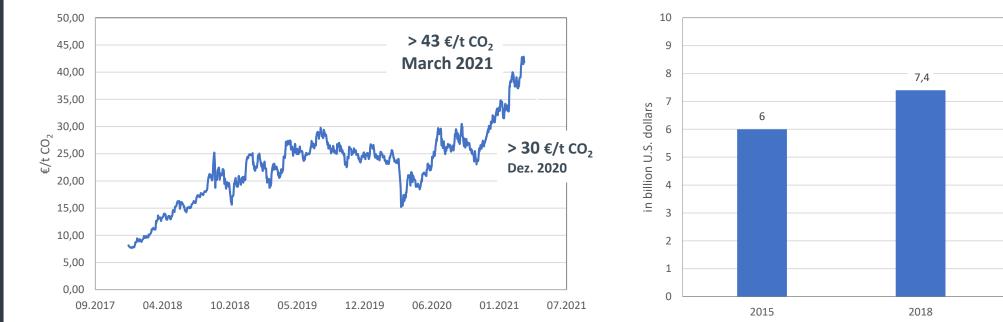
A growing market with growing dependencies

Asia is leading production & consumption of EO in the world

Source: EI-JKU based on IHS Market 2020 and Mordor Intelligence 2020

* other Asia includes the Indian Subcontinent, Japan, Taiwan, South Korea and Southeast Asia

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 768789.



2025*

CO₂ – from emission to feedstock <u>Simple classification of pathways for CO₂ reuse</u>

daily EU ETS carbon market price

Global carbon dioxide gas market value 2015-2025

entre seper Universität Linz

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 768789.

The CO₂EXIDE project approach

Renewable inputs for sustainable process design

The project aims for sustainable environmentally friendly products, thus the focus is on biogenic CO₂ and renewable electricity as main resources. As cost are a determining factor, further focus is on existing, high-purity CO₂-sources such as:

- Biogas upgrading
- Bioethanol production

P2X/CCU technologies can balance future energy systems with high shares of fluctuating renewable energy sources such as:

- → Photovoltaics (PV)
- → Wind power

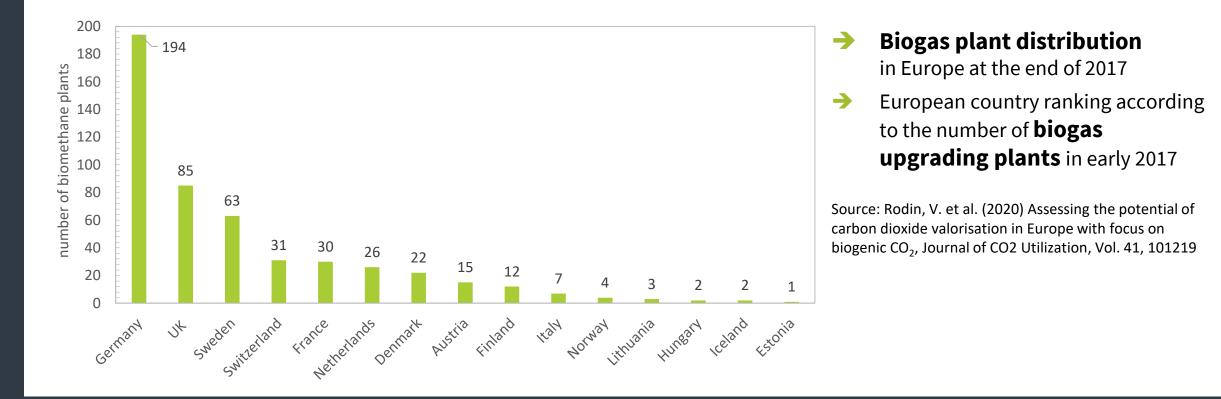
Thus, the focus is on existing large PV and wind farms.

Potential sources of biogenic CO₂

existing, high-purity point sources in the focus

CO ₂ from combustion processes	CO ₂ as b	y-product from industrial	processes	CO ₂ from the atmosphere Ambient air 0.039 vol%	CO ₂ -sources with ratio of CO ₂ in the off-gas Most important biogenic sources
Coal 12 – 15 vol%		Ethylene 12 vol%	Cement 20 vol%		
Natural gas 3 – 10 vol%	Bioethanol up to 100 vol%	Ammonia up to 100 vol%	Steel & Iron 15 vol%		are highlighted in green
Fuel oil 3 – 8 vol%	Fermentations up to 100 vol%	Refineries 3 – 13% vol%			
Biomass 3 – 8 vol%	Biotechnological processes	Chemical industry	Industrial production processes		

Source: Rodin, V. et al. (2020) Assessing the potential of carbon dioxide valorisation in Europe with focus on biogenic CO_2 , Journal of CO2 Utilization, Vol. 41, 101219

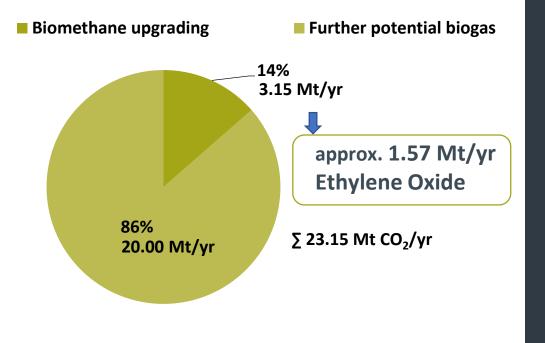

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 768789.

Biogas plant distribution in Europe

existing, high-purity point sources in the focus

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 768789.

Biogenic CO₂ from biomethane production


existing, high-purity point sources in the focus

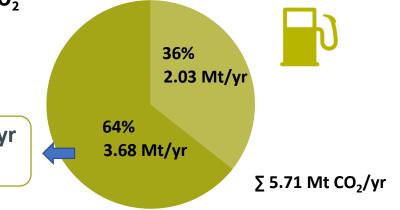
- approx. 500 biogas upgrading plants to biomethane in operation in Europe
- → 14 % of biogenic CO₂ from biogas is already separated, but hardly utilized
- **Significant potential of highly concentrated biogenic** CO_2 for valorization

CO₂ potential in Mt/year from biomethane upgrading as part of total CO₂ potential from biogas production for the EU-28 (data for 2016)

Source: Rodin, V. et al. (2020) Assessing the potential of carbon dioxide valorisation in Europe with focus on biogenic CO₂, Journal of CO2 Utilization, Vol. 41, 101219

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 768789.

Biogenic CO₂ from bioethanol fermentation


existing, high-purity point sources in the focus

- CCU technically feasible without extensive effort
- Some production site capture the CO₂ already distribute the produced CO₂
 commercially
 - Dry ice

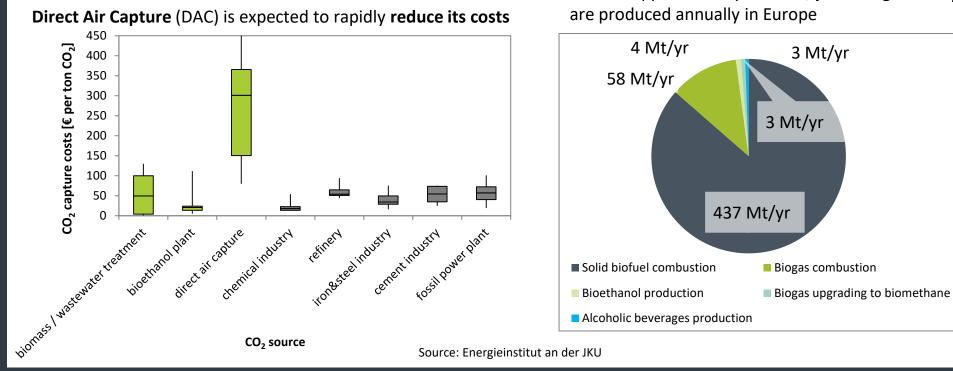
- Carbonic acid for beverages
- → Fertilizer for greenhouses

approx. 1.84 Mt/yr Ethylene Oxide Commercially utilized (projection)

Further potential bioethanol

Amount of CO₂ in Mt/year produced in the EU bioethanol industry in 2016 including amount of possibly commercialized CO₂

Source: Rodin, V. et al. (2020) Assessing the potential of carbon dioxide valorisation in Europe with focus on biogenic CO₂, Journal of CO2 Utilization, Vol. 41, 101219



CO₂ capture

CO₂ from **biogenic sources** can provide **lowest capture costs**

Capture costs

Of which 86% imply cost intensive flue gas purification

 \rightarrow

an der Johannes Kepler Universität Linz

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 768789.

Biogenic CO₂ in Europe

In total approximately 506 Mt/yr of biogenic CO₂

Matching of biogenic CO₂ and RES sources

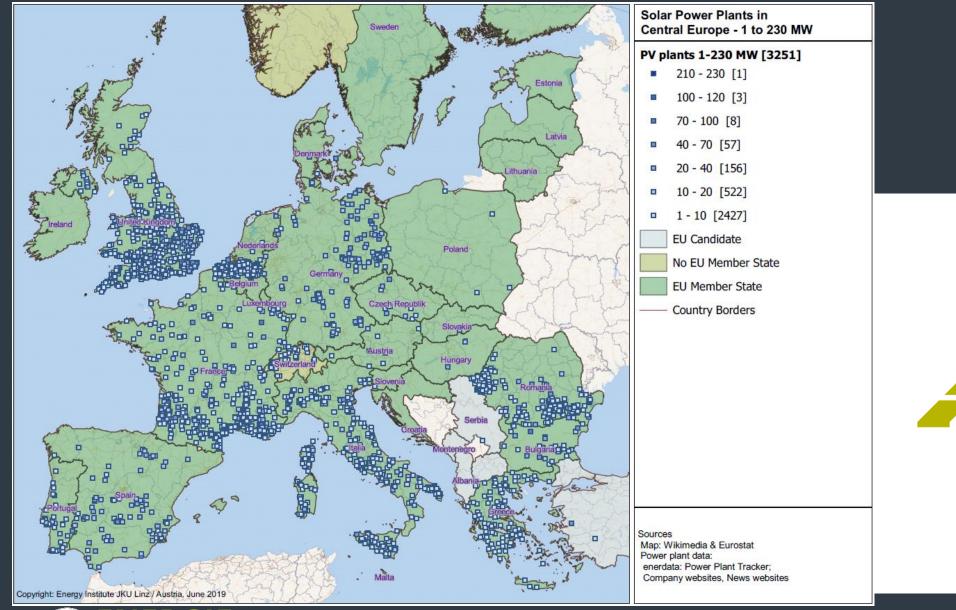
GIS-based analysis of potential CO₂EXIDE production sites

Based on GIS analysis tools, existing CO₂ and renewable power sources were matched to identify possible CO₂EXIDE production sites within Europe to ...

- ... provide 100 % renewable based products
- ... avoid transport of (hazardous) reagents
- ... support grid operation by balancing out fluctuating, locally generated renewable energy
- For the **specific case studies**, additionally favorable infrastructure was considered...
- ...ethylene producers/consumers
- ...pipeline infrastructure

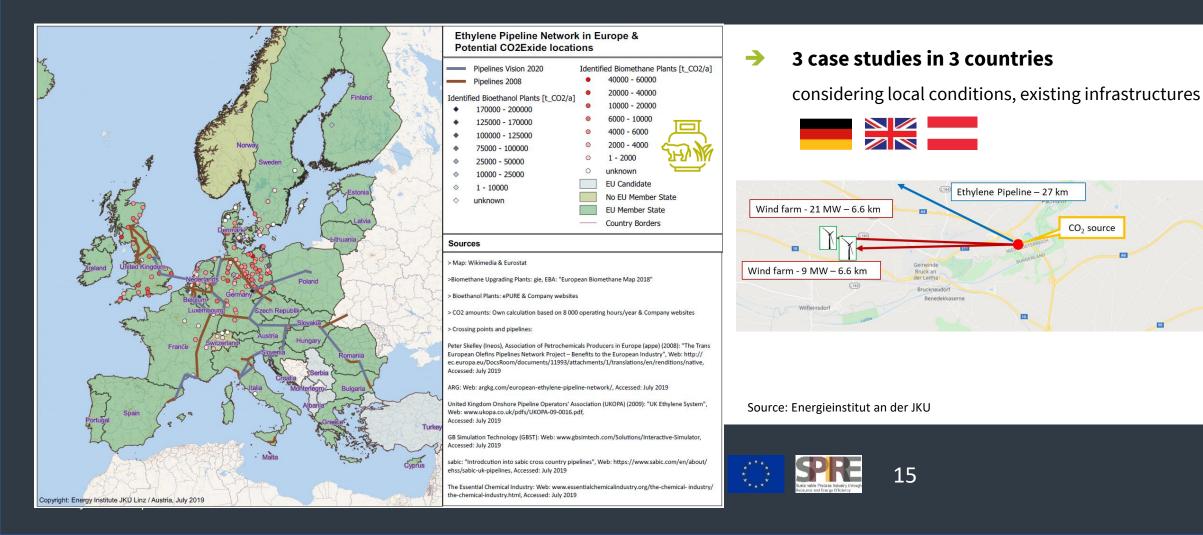
Mapping of biogenic CO₂ sources

- \rightarrow existing biomethane upgrading plants (>16 kt CO₂/yr)
- \rightarrow existing bioethanol production sites (> 160 kt CO₂/yr)
- Mapping of RES sources
 - → Existing onshore wind farms > 1 MW



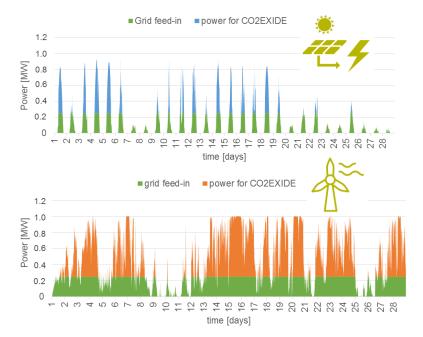
- Existing solar power plants > 1 MW
- → Focus on 4 categories of plant sizes from 1 to 500 MW

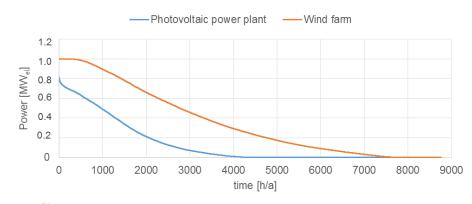
13


This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 768789.

GIS based approach for roll-out scenarios

Visualisation & intersection of CO₂-point sources and renewable power plants





Development of specific case studies for potential technology roll-out

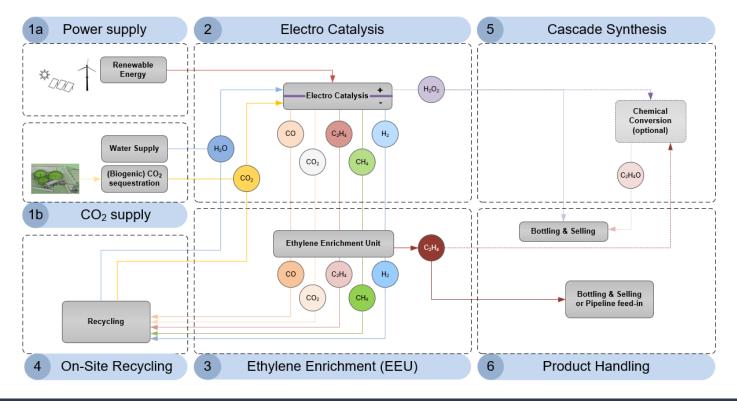
Modelling of fluctuating renewable power generation

Typical electricity production characteristic of a 1 MW photovoltaic power plant (top) & wind farm (bottom)

- avoidance of usage competition & system inefficiencies
- inimum levelized cost of CCU product

The power is divided in the share of grid feed-in and power for the potential CO2EXIDE-plant for scenario development; central European conditions applied

Source: Energieinstitut an der JKU



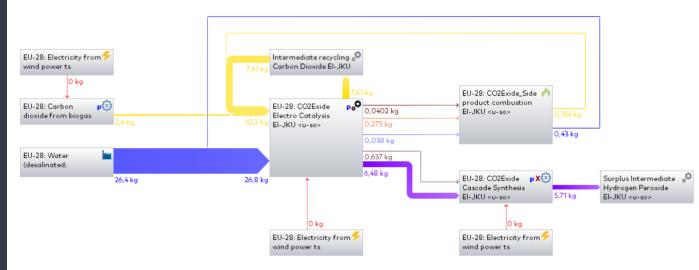
Impact related studies

On the way from TRL 3-4 to TRL 7-9

- Virtual upscale based on experimental data and modelling
- Scenario based comparative LCA
 - → cradle to gate
 - ➔ fossil & biobased benchmarking
- Technoeconomic Assessment
- CAPEX, OPEX, ROI, NPV, for implementation oriented case studies

Figure: **Schematic overview of analyzed CO₂EXIDE process** with on-site by-product recycling and cascade synthesis to ethylene oxide and potentially to ethylene glycols

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 768789.



Source: Energieinstitut an der JKU

Life Cycle Assessment Modeling

CO₂EXIDE process, cradle-to-gate, scenario with internal recycling

Process energy supply fully dominates the environmental impacts \implies renewable supply is an essential prerequisite Side products, especially with significant LHV as H₂,.. require full valorisation \implies on site recycling

Functional unit:

1 kg ethylene oxide

process energy electricity

- 1) EU28-mix
- 2) Local supply from PV
- 3) Local supply from Wind

Feedstock:

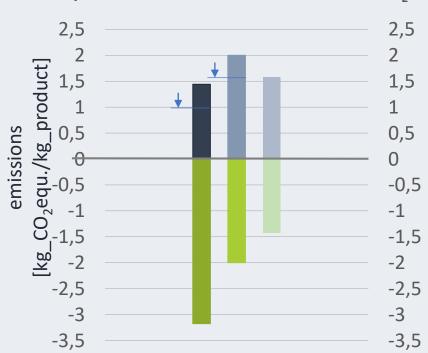
- i) CO₂ from biogas upgrading
- ii) fossil CO₂ from EO production

Side product treatment/utilization


a) on-site recycling

18

b) up-grading / feed-in


Life Cycle Assessment Modeling

CO₂ reduction potential of the CO₂EXIDE approach

CO₂ demand per 1 kg ethylene: 3.14 kg (stoichiometric)

> -300 % compared to fossil ethylene
Ethylene demand per 1 kg ethylene oxide:
0.637 kg (stoichiometric)
2 kg CO₂ per 1 kg ethylene oxide
-200 % compared to fossil ethylene oxide

GHG footprint of utilized CO₂ is crucial **Biogenic CO₂** source has significant impact **net CO₂ reduction could be achieved**, depending on source

Comparison of fossil benchmark's GWP and CO₂EXIDE CO₂-demand per 1 kg of product

ਓ

produc

<u>х</u>

[Kg.

and

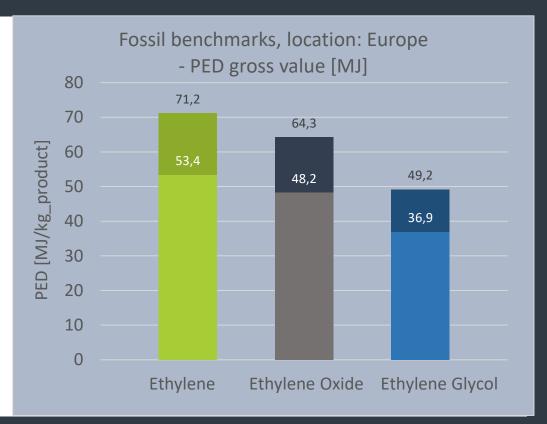
eB

σ

19

- GWP Ethylene fossil based
- GWP Ethylene Oxide fossil based
- GWP Mono-Ethylene Glycol fossil based
- CO2 demand Ethylene CO2EXIDE
- CO2 demand Ethylene Oxide CO2EXIDE
- CO2 demand Mono-Ethylene Glycol CO2EXIDE

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 768789.

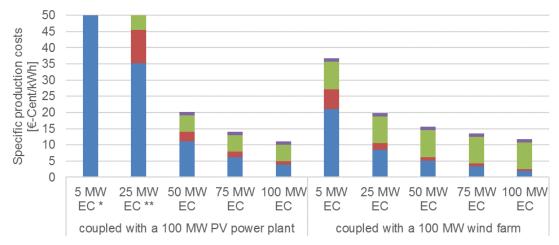

Source: Energieinstitut an der JKU

Life Cycle Assessment Modeling

Primary Energy Demand (PED) of the CO₂EXIDE approach

- The PED consists of renewable and fossil energy sources the latter can be reduced basically to 0 for the CO2EXIDE approach.
- Due to electrochemical conversion of stable, low-energy molecules (rather than fossil resources with high calorific value), the CO₂EXIDE process can hardly be competitive to fossil production from primary energy perspectives
- The targeted efficiency is comparable to other renewable PtX technologies, using renewable power and concentrated CO₂ streams

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 768789.

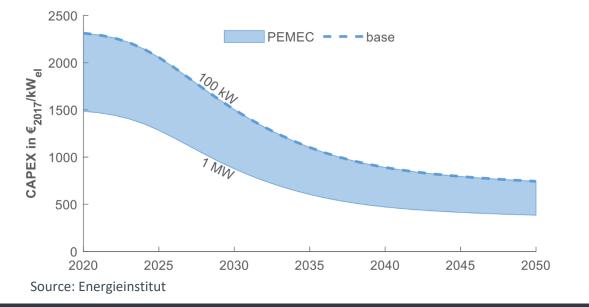

Source: Energieinstitut an der JKU

Techno-economic scenario development

CAPEX & OPEX estimates – for now and future conditions

Estimating specific product costs now and 2030 based on a total cost estimate for representative plant capacities

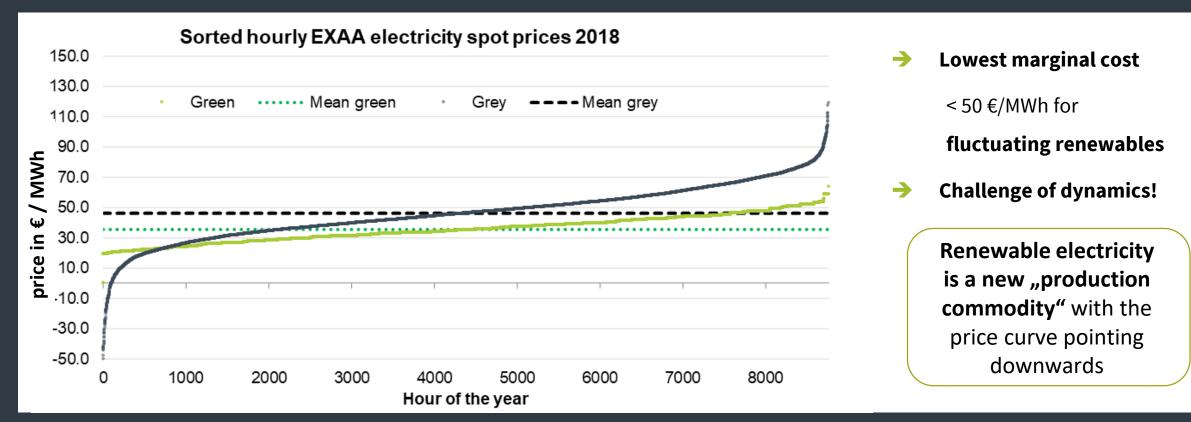
Investment Operation, maintenance and other costs Electricity Water and CO2


Source: Energieinstitut

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 768789.

Source: Energieinstitut an der JKU

21


Component Level Learning Curve Tool

to estimate CAPEX reduction potential

Techno-economic scenarios

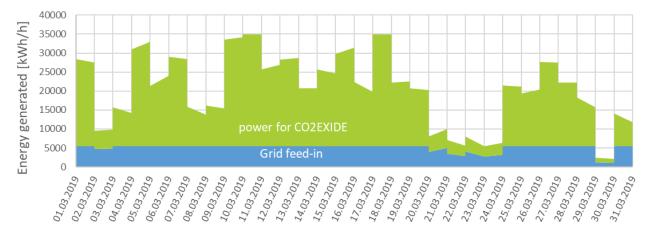
Electricity spot market prices for green (and grey) electricity

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 768789.

Implementation case study at biomethane facility

Biogas plant & wind farms & ethylene pipeline in vicinity

- Input material: Bio- and municipal waste as feedstock for the anaerobic digestion
- Biogas upgrading CO₂ with high technical quality & concentration
- Membrane separation of CH_4 / CO_2 with feed in of CH_4 to the natural gas grid
- Simulation of hourly energy production of the local wind power


CO2 output: approx. 3,370 t/a

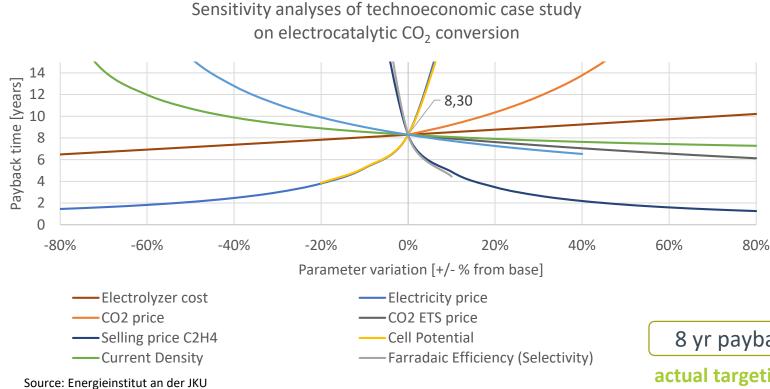
Power Input: approx. 3.2 MW 350 days/yr, 15 years lifetime

Ethylene Output: approx. 1,050 t/a

Ethylene Oxide Output (w/o losses): approx. 1,649 t/a

Wind energy output Bruck/Leitha in March 2019

Source: Energieinstitut an der JKU


This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 768789.

Day of Month

Implementation case study at biomethane facility

Estimate for payback time – sensitivity analysis results

VARIABLES	Min	Base	Max	Unit
electrolyzer cost	139	695	1,250	€/m²active area
electricity price	28.5	35.6	64.1	€/MWh
CO ₂ price (raw material)	n/a	0	40	€/ton
CO ₂ ETS price				
(avoided emissions)	n/a	0	40	€/ton
market price C ₂ H ₄	220	1,100	1,980	€/ton
cell potential	1.6	2	3.6	V
current density	100	500	900	mA/cm²
selectivity to C ₂ H ₄	n/a	90	99	%
conversion rate of CO ₂	21	70	98	%

8 yr payback time in base case

actual targeting scenarios to increase economic performance

For takeway...

Ecological implications

- Main focus to showcase the proof of concept is on already available biogenic carbon dioxide like CO₂ from biogas upgrading to minimize feedstock cost & maximize carbon off take.
- Achieving a net zero emissions EU energy system by 2050 based on predominantly renewables is a prerequisite.
- In absence of binding international climate agreements, a sufficient high price on CO₂ emissions, CCU is actually hardly economic.
- Nevertheless the need to bring the CO₂ electrolysis as future-proof CCU technology to the next TRLs now due to the expected long periods to market.
- As with all renewables scale up and market division needs to be linked to stringent sustainability criteria to take full advantage. A framework for analysis is currently evolving.

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 768789.

For takeway...

Economic implications

- A high performance especially in the reductive activation, catalytic technologies for CO₂ conversion (especially faradaic efficiency) is most crucial.
- The cost of electricity is of most significant relevance, fluctuating production sources can provide already now promising levels.
- The cost of CO₂ as raw material cannot be neglected, especially if complex upgrading and purification is required.
- CO₂ electrolyzer investment costs are less critical in comparison, with the outlook of learning curves and economies of numbers.
- Renewable ethylene / ethylene oxide production cost can correspond to current market prices but hardly to production costs. Emission trading compensation, Green premium incentives can be medium-term tools to face international competition.

What are the right benchmarks for a transformed production system?

Many thanks for your attention!

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 768789.

Further Information

Contact

Johannes Lindorfer lindorfer@energieinstitut-linz.at

Energy Institute at the Johannes Kepler University Altenberger Strasse 69, 4040 Linz Austria

CO₂EXIDE

•CO2EXIDE

BAMB

ligneflag

Optisochem

sunliquid

TRANKINA

BAMBOO

LIGNOFLAG

OPTISOCHEM

REWOFUEL

SUNLIQUID

Store&Go

GRASSFINERY

an der Johannes Kepler Universität Linz

http://www.co2exide.eu/

http://bambooproject.eu/

https://www.lignoflag-project.eu/

http://optisochem.eu/

http://www.rewofuel.eu/

https://www.sunliquid-project-fp7.eu/de/

https://www.storeandgo.info/

http://www.grassfinery.eu/

https://www.chibiofp7.fraunhofer.de/

This project has received funding from the European Union's Horizon 2020

research and innovation programme under grant agreement No 768789.

29

Our European projects in the area of technology assessments